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Abstract-Quasi-static shear crack propagation in a linear elastic fluid-saturated porous solid causes
a change of pore pressure on the crack plane if it is impermeable but not if it is permeable. Assuming
that the pore pressure induL.'ed on the crack plane reduces the effective compressive stress (total
stress minus pore fluid pressure) and. as a result. the frictional resistance. we lind that the energy
required to drive the crack is decreased by up to about 60% of the value required in a purely elastic
solid. The required energy decreases with velocity at low and high velocities. but increases with
velocity for Vile in the range of 10"'-10:. where Vis the speed of propagation. I is the loaded length
of the semi-infinite crack and e is the diffusivity. When the effect of the pore pressure induced on
the crack plane is neglected. the results are qualitatively similar to those of Rice and Simons ()<)76.
1. G(·(Jplrys. Res. Ill. 5322-5344) for the permeable crack: coupling bctwlocn deformation and
diffusion st"bilizes prop"gation in the sense that the energy thilt must be supplied to drive the cr"ck
incre.lSes with velocity within iI tinite range I,f the ratio Vlie. This range (If Vice is "Iwut iln order
of milgnitude lower th"n that for the permeahle crack. hut includes the r"nge cited "hove and is
within the rilnge of ohserved creep events on the Siln Andreas t;lllit.

INTRODUCTION

This paper 'lOalyzes the stress and pore pressure fields induced by a plane strain shear
(Mode II) crack propagating steadily and quasi-statically in a linear clastic. fluid-inliltrated
solid. The response of such a solid. unlike that of an ordinary clastic solid. depends on the
time scale of the applied loads. More specifically. the response is stiller for loads that are
applied rapidly by comparison with the time scale of difrusion (undrained conditions) than
for loads Ihat are applied slowly enough to allow time for pore pressure equilibration by
fluid mass difrusion (drained conditions). Consequently. the stress intensity factor of a
crack propagating quasi-statically through a diffusive solid depends on the velocity of
prop,tgation. Furthermore. this dependence is different depending on whether the crack
plane is permeable or impermeable to the diffusing species.

Consideration of this problem is motivated by applications to the propagation of slip
on l~llalts in the Earth's crust. For reasons that will be explained in the body of the paper.
previous work on propagating shear cracks in fluid-saturated elastic solids (Rice and
Simons, 1976; Simons.1977 ; Cleary. 1978) is appropriate when the crack plane is permeable
to the ditrusing pore fluid. [Hereafter. we will. for brevity. denote the reference Rice and
Simons (1976) by RS]. However. faults in the Earth's crust are often thought to be imper­
meable (Wu el al.• 1975; Wang and Lin. 1978) because they contain clay or other fine­
grained material. Although slip is not always localized on a discrete plane. intense shear
deformation is typically confined to a narrow zone. Hence. for mathematical simplicity,
we idealize this zone as an impermeable plane across which the slip displacement can be
discontinuous.

The purpose of this paper is to investigate the effects of impermeability of the crack
plane on the solution. Recent related work (Rudnicki. 1986. 1987; Rudnicki and Hsu.
1988; Rudnicki and RoclolTs. 1990) has shown that the specification of an impermeable
plane can have a significant effect on the stress and pore pressure fields induced by instan­
tancous and steadily moving shear dislocations.

Prcvious work on propagating cracks in fluid-infiltrated porous solids (RS; Simons.
1977; Ruina. 1978; Cleary. 1978) has demonstrated that the stiffcr response of the Iluid­
saturated matcrial to rapid deformations can contributc to stabilizing the crack against
rapid propagation. RS (also. Rice and Cleary. 1976) have discussed this stabilizing effect
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as a possible mechanism for the propagation of creep events (e.g. King el al.. 1973; Johnson
el al.. 197..t; Goult) and Gilman. 1978; Evans ('l al.. 1981). These are slip events that
propagate too slowly. in the order of 1-10 km per day. to generate seismic radiation. This
stabilizing mechanism may also be a factor contributing to the occurrence of slow slip prior
to earthquakes. It is possible that such slip could be accompanied by detectable effects that
would forecast the impending earthquake (e.g. Rice. 1979a; Rudnicki. 1988).

To make the problem mathematically tractable. we consider the propagation of a semi­
infinite shear crack. However. as is well-known from linear elastic fracture mechanics and
as discussed by RS. the loading on the semi-infinite crack can be chosen so that the stress
field near the edge of the crack is identical to that near a finite crack. To examine the effects
of the crack plane impermeability and compare our results with those of RS. we obtain the
velocity dependent stress intensity factor for a steadily propagating semi-infinite crack
loaded by uniform shear over a finite distance behind its tip. As for the permeable shear
crack analyzed by RS. the singular crack-tip model is found to be inadequate at high
propagation speeds. Consequently. we also present results for a modification of the Palmer
and Rice (1973) cohesive zone model used by RS. This model attempts to account. albeit
approximately. for the processes of material breakdown near the crack-tip.

A second effect that occurs for the impermeable fault. but not for the permeable. is
due to the ch'lOge in pore pressure induced on the crack plane. Because the frictional
resistance to slip depends on the effective compressive stress. that is. the total compressive
stress minus the pore pressure. changes in pore pressure alter the resistance to slip. Although
the pore pressure induced on the impermeable crack plane is discontinuous .Ifld Il<.Is opposite
signs on the two sides. we argue that the pore pn:ssure increase. which reduces the etlcetivc
compressive stress and. hel1l:e. the frictional resistal1l:e. dominates. With this assumption.
we estimate the etlcct of the induced pressure on a criterion for fault propagation and its
depemknce on the velocity of propagation.

The remainder of the paper begins with a brief discussion of the equations governing
the response of a linear ebstic difl'usive solid. These equations were Iirst formulated by Biot
(llJ41) in the contexI of lluid-saturaled soils and they arc formally identical to the equations
of fully coupled thermoelasticity (BioI, 1956; Rice and Cleary. 1976; Rice, 1979b). Indet:d,
they arc sullicienlly general to deseribt: the linearized response orany clastic solid containing
(l diffusing species that call be characterized by two scalar variables. The form of the
equations to be describt:d here is that introduced by Rict: and Cleary (1976).

(jOVERNI:'-IG EQUATIONS

In (l linear dastic difl'usive solid. two variabks. in addition to tht: strains of the solid
matrix f:,/ and the total stresses (1,/. arc needed to specify the response. These arc conveniently
taken to be the fluid mass eontt:nt per unit volume of porous solid f1I and the pore pressure
p. The l<atter is defined as the pressure, in excess of the <ambient, needed to cquilibrate any
fluid mass flux from small material dements. If the deformation is so slow rcl.ltive to the
time seak of lluid mass difl'usion that there is no alteration in pore fluid pressure. p = 0
<lnd the response is said to be drained. In this limit the expression for the str<ain components
reduces to the usual one of linear elasticity:

( I )

where G is the shear modulus, \' is the drained Poisson's ratio and 6" is the Kronecker delta.
In the contrasting limit of undrained response the deformation is too rapid to allow

for fluid mass diffusion from material clements and. hence, f1I is equal to its reference value
fill). In this case. the alteration in pore fluid pressure is proportional to the negative of the
mean normal stress:

p = - fJrrH/3 (2)

where the constant of proportionality B is called Skempton's coeffkient. Values of B range
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from zero to one with the lower limit attained for highly compressible pore fluid and the
upper for separately incompressible solid and fluid constituents. For undrained response,
the strains are again related to the stresses by (I) but with v replaced by Vu the undrained
Poisson's ratio. Since \' ~ Vu ~ 1/2. with limits attained under the same conditions as for
the limits of B. the undrained response is stiffer than the drained response.

For arbitrary deformations. the response will be neither drained nor undrained and
the expressions for the strains and alteration of m are as follows:

(3)

(4)

where Pu is the mass density of homogeneous pore fluid. Rice and Cleary (1976) (also, see
Rudnicki, 1985) give a full discussion of the development of these equations and their
relation to the formulation of Siot (1941). They also tabulate laboratory values of the
parameters \', \'u and B. For plane strain deformation in the xy plane, the condition e)) = 0
can be used to eliminate (1" from (3) and (4):

1(1' -I')
2Gr.'11 = (1'11 - v( (1 \ \ + (1". ) (),/I +' "--_.- 1'1) ,II

B( I + \'.. )

3I1u(I'.. -\')[I 3 J
fIl - fIl u = (j IJ( I +I'J 2 «(1" + (1 IT ) + 21J( I + I'J I'

where, now, (~, fI) = (I, 2) = (x, y).
The tinal wnstitutive equation is Darcy's bw (Rice and Cleary, 1(76):

(5)

(6)

(7)

where 'I, is the m;ISS !low rate in the ~ direction per unit area and 1\ is a permeability. The
permeability is more frequently expressed in the form 1\ = k/y where y is the !luid viscosity
and k has units of area.

In adllition to the constitutive equations (5), (6) and (7) field equations expressing
equilibrium, compatibility and !luid mass conservation arc nt:edell. The equations of equi­
librium in the absence of bolly forces arc as follows:

(;(1 "./iJx + (i(1I"./liy = O.

(8)

(9)

The equation of plane strain compatibility can be expressell in terms of the mean stress anll
pore pressure by means of the usual manipulations:

( 10)

where V~(... ) = (11( .. .)/cx~ +2~(... )/,iy 1 and '7 = 3(vu - \')/(28( 1+ vul (I - ")]. An equation
expressing conservation of mass for the fluid constituent is

ClJ,/cx, +h"/Cf = O. (II)

This equation can be rewritten in terms of the stresses and pore pressure by substituting
(6) and (7) into (II) and combining with (10) :
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( 12)

where JI = (\'" -1')/( I-\') .Intl the dilfusivity c is given by

( 13)

Comparison of (12) with (6) reveals that thl.: quantity in square bradl.:ts in (12) is pro­
pMtiollal III the lluid n1<\Ss content per unit volunle. I knLe. as emphasized by Ricc and
('h.:ary (1 1)76). 111 satislil.:s a homogcncous diffusion cquation out thc pon: pressure fl. in
gcm:ra!. docs no!.

Thl.' govcrning l.'qns (X) (10) and (12) will hc solved for lhl.'casl.: ofa scmi-infinite shcar
(l\lodl.' II) nat:k located 011 thc .\-a,is and moving steadily and quasi-statically at a constant
speed /" (Fig, I), TIll: l.'rad is loaded by shear stn:sses r(x) whidl me applied to the t:rack
faces and mO\c with thc crack, ThL: crack and the applicd loads arc assumcd to havl.: bel.:n
moving <It this spL:L:d long l.:lwugh Sl) that transil.:l1t dli:dS han: died out. Thus. thl.: problem
is on\.." of skady propagation alll! any explicit dt:pcIH.Jcnce on time! c<ln bl.:' eliminated by
adopting <I coordinate system that mows \-!':ith the crack-tip, Furthermore. for steady
propagation in the x din:t:tilln. ('/i"'!l.'an be replal.:l.:d by - /'(' tr and. thus. (12) becomes

( 14)

1l0UND,\RY CONDITIONS

Ik\.:aLls~ of anti-sYl11llH:try aoollt the erack plane y = O. it is possible to formulate the
probkm in the: upper half plant: with boundary conditions given on y = o. Tht: strt:ss
l:oll1ponent u" is anti-symmctrll.: anout.\' = 0 and. oCl:ausc tht: normal tral:tion is continuous
across y == O. it lllust be zcro then::

G ... (x.O) == O. -:f_ < X < :f_. ( 15)

Similarly. the displaccment component II, is anti-symmetric about y = O. Although III is
discontinuous 011 the cra\.:k itself. it must be continuous ahead of the crack and. hcnce. must
vanish therc:

II,(X.O) = o. () ~ x <x. ( 16)

This condition can bc rewrittcn in terms of the stresscs and pore pressure by using thc
strain disrlacclllent relation I:" = r'II,itx and the constitutive relation (5), The result is
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a" (x. 0) + 2,/p(x. 0) = O. 0 ~ x < x.. (17)

where ( 15) has also been used.
The pore fluid pressure p is also anti-symmetric about y = O. Hence. if p is continuous

on y = O. it must vanish there and (17) reduces to a,,(.\". 0) = 0 (0 ~ x < x). These are
the boundary conditions used in previous studies of shear cracks in diffusive solids (RS;
Simons. 1977: Cleary. 1(78). In this case. tp (I". in general. will not be zero on y = 0 and.
hence. by Darcy's law (7). fluid will flow across the x-axis. An alternative possibility is that
the crack plane models a shear fault that is impermeable to fluid flow. The condition
enforcing this requirement is

i'p(x.O),?r = O. - x < x < x. (I S)

The pore fluid pressure is still required to be anti-symmetric about y = O. but need not be
continuous and. hence. takes on equal and opposite values as the x-axis is approached from
above or below.

As already mentioned. the applied shear loading on the fault faces is described by !(x).

This provides the following boundary condition:

(j,,(x.O) = -!(xl. -7; < x ~ O. ( 19)

As discusscd hy RS. r(x) n:pn.:sents the dilrerence between an applied farlield loading and
a resistive friction stress. Following RS. we will (irst solve the prohlem specified by eqns
(X) (10) and (14) and the houndary conditions (15) (19) for a periodic variation of shear
stress. Although this loading is of no real interest hy itself. it is a hasis for developing more
realistic solutions hy superposition. In particular. we use the result to generate the solution
for a uniform distrihution of shear stress over a distam:e I hehind the crack-tip.

I'I':RIO()((' CRACK ""ACE I.O:\()IN(j

In this section. we derive the solution for a periodic loading of the crack faces given
hy

r(x) = !'(x) = e'"

where / = ( - I) I .:. With this loading. (19) becomes

(20)

(21 )

The solution procedure follows that of RS. In particular. we use Fourier transforms
and the Wiener-Hopf techniquc. The Fourier transform of a function f(x. y) is defined as
follows:

with inverse

1(". .1') =r, /(x.y) e .. , dx.

. If' ." I'/(.\".y) =., '/(".y)e'"'u.:.
_lr ,

(22)

(23)

Application of (22) to thc governing eqns (R)-(IO) and (14) yields ordinary dilTcrential
equations for the transforms of the stress components and pore pressure. The solution to
these equations is given by RS ~lS follows:
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"fIll 1\

(:5)

'II .... )1 (26)

(27)

where fIl:(J():::: 1\:: and n:(,.:) = I\::-/"T c and ..1(1\:). B(,,') and C(n:) are to be determined.
In order to ensure convergence of the inverse transforms in the upper half-plane. y ~ O.
fIl(l\:) and n(l\:) are subject to the following n:strictions:

(28)

where "Re [... j" stands for .. the real part of [... j".
Fourier transformation of the boundary conditions (15) and (18) yields

(29)

and

(30)

Ikcause the two rem;lining boundary conditions (17) and (21) do not apply on the entire
r-axis. the Fourier transforms of the quantities entering these equations are not known
completely. Thus. the Fourier transform of the shear stress on r = 0 is given by

(31 )

where the unknown function F (n:) is detined as follows:

(32)

As indicated by the superscript. F (n:) is analytic in the lower half of the complex h: plane,
i.e. Im(l\:) ~ O. Substitution of (21) yields //(i. - 1\:) for the tirst integral in (31), where i. is
assumed to have a small negative imaginary part as 11I:eded to ensure convergence. Sub­
stitution of the expression for if" (1\:,0) from (27) into the left hand side of (31) then gives

(33)

Similarly. the Fourier transform of [1T,,(x, 0) + 2Il1/(x. 0)] is given by

rT,,(J,·. 0) +2"i;(h·. 0) = (i'(".)+ f' [1T,,(x.O)+ 2111'(\'.fl)je '''dx (34)

"

where
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(35)

is analytic in the upper half of the complex,,; plane, 1m (,,;) ~ O. The second integral in (34)
vanishes because of (17) and use of (24) and (25) to evaluate the left-hand side yields:

(I (36)

The functions A. Band C can be expressed in terms of G+(II:) by using (24) and (25)
to evaluate (29) and (30) and solving the resulting equations along with (36). The results
are as follows:

Substitution of (37) (39) into (33) then gives

C' (,,;) { 1/\ [m(,,;) ]} I
1 . _ (2wfV) m(lI:) - I = F (1\) + ..

2( I - II) m(lI:) 11(11:) _ 1(11: - ;.)

(37)

(38)

(39)

(40)

This is a typical Wiener Hopf equation (Noble, 1951:<) that relates the two unknown half­
range transforms G" (II:) and F (,,;). The solution procedure involves rearranging the
equation so that each side is an analytic fundion of II: in h.df-planes of the complex,,; plane.
If the half-planes overhlp, then each side of the equation is a representation of the same
entire function. To this end, we follow RS and express m(lI:) and 1/(11:) as products of
functions analytic in the upper and lower half-planes:

(41 )

The function m" (II:) = II: I ~ has a branch cut on the negative imaginary axis and, hence, is
unalytic in Im(lI:) > O. Simil.\r1y, n/" (II:) has a branch cut on the positive imuginary axis
from u; to IX, where t: is a small positive constant that eventually will be made to approach
zero, and is analytic in Im(lI:) < f.. The function n "(II:) = (/\ -IVic) I~ has a brunch cut on
the positive imaginary axis from I Vic to 100. Note that this choice of branch cuts is consistent
with the restrictions (28), that [m" (1I:)f = /\~, and that [m - (/\)] ~ = /\~ in the limit f. -+ O.

The relations (41) can be used to rewrite (40) us follows:

where

I { [m -(II:) ]}D (/\) =-- I + (2111:/1cl V) - I .
I-II 11(/\)

(42)

(43)

Because 11 - (II:) is never equal to zero for Im(lI:) ~ 0 (as long as V> O)D - (1\) is analytic for
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(mU\) :::; 0 and. in fac!. for [m(l\) :::; I:. Furthermore. D (1\) # 0 in the lower half-plane.
approaches I (I - p) as !11.'1 -- O. and approaches I as 11\1 -- J:,

The left hand side of (-l~) is analytic in the upper half-plane but the right hand side
still has a pole in the lower half-plane at 11.' = i. (Recall that i_ has a small negative imaginary
part), However. the right hand side can be made analytic by subtracting an appropriate
term from both sides. The result is the desired rearrangement:

- -

~III-(h') 1(I\-i,)1I1 (i.)O (i,)

Now. the left-hand side is analytic for [rn(l\) > O. the right-hand side is analytic for
[rn(h') < 0 and the two sides are identical on the real 1\ axis. Thus. each side of (44) is the
analytic continuation of the other and both are equal to an entire function. say H(h'),

The function fI(h') can be determined from the asymptotic behavior of (44). Because
llf the requirements of bounded strain energy. both G-(I\) and F (".) approach zero as
111.'[ ...... x, As a result. bl>th sides of (44) tend to zero as 1"'1 ...... x in the appropriate domain
of analyticity. By means of Liouville's theorem (e.g. Carrier 1'1 ill .. 19(6). we can conclude
that Il(h') is identically zero in the entire 11.' plane. Equating the left hand side of (44) to zero
yields

(j'U\) =
~III • (11.,)

(II.' - i_)1II (i)1) (i)'
(-l5 )

Suostitution into (.17) (.11}) yields expressions for A. IJ and C. [n prim:iple. the solutions
tilr the pore pressure and stress components can he ohtained hy suhstituting the results for
.·r. IJ and C into (~4) (~7) and using the Fourier inversion (23), hlr example. the shear

stress"" is given hy

",,(x. 1') = I.. j't" I. {e mi')' [III.' -lh'l'J
' ~n(I-llllII (I,)/) (I,) , ("'-I,) 111(11.')'

Although the integrals in (46) cannot he expressed in closed form. it is possible to evaluate
them as r -- O. where r = (x~ +y~) I ~. The basic strategy is to transform the integrals to
contours in the complex 11.' plane on whieh the exponents are real and negative. Approxi­
mation for small r then leads to the asymptotic expression:

where

K= ~ I' cos (0;2) [I - sin (Oi2) sin (30/2)] + O( I)
(-"nr) -

I-I
K=

III (i.)f) (i,)

(47)

(4X)

is the stress intensity factor for the loading rl;'(x) = eU
'. The expression I'm t"T" is identical

in form to the field ncar a Mode" crack in a linear elastic solid (Rice. I96ii). hut. of course.
hen: the stress intensity factor K depends on the velocity and difrusivity. The result for the
stress intensity factor (4ii) has the same form as that obtained hy RS for the permeable
fault. but diners in the expression for f) (i.),
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Similarly. the other stress components can be shown to approach the form of the
linear elastic crack-tip field as r - O. Asymptotic evaluation of the pore pressure is more
formidable. Because of cancelling terms the calculation requires considerable care. A more
direct approach is to use a boundary layer analysis of the governing equations (Simons.
1977 ; Rudnicki. 1990). By either method. it can be shown that the pore pressure is bounded
and finite as r - O.

Later. we will also need the expression for the slip <5(x) on the crack which. because
of anti-symmetry. is equal to ::!1I,(x. 0 +). Use of the strain displacement relation f." = til,. tt
and the constitutive relation (5) leads to the following expression for the slip on x :;; 0:

O(X) = [(I-\')iGjf' [a,,(x.0)+2'W(x.O)jdx.

"
Inversion of (34) and substitution of (45) yields

(50)

This integral can he evaluated as described hy RS and. 'Igain. the result is identical in form
to thC'irs hut with a ditferent expression for D :

. 2(1 - \.) c'" erf[e "'m (i.)['I' 'I
()( t) ::::

. (ii.n u)

where err (~) is the error fundioll (Ahramowitz and StC'gull. t l)64).

UNIH>RM SHEAR l.OADING OVER A DISTANCE I

(51 )

The solution ohtained in the last section can he used to develop the solution for any
arhitrary loading by Fourier superposition. Let /';' denote any field quantity. for exampk.
stress or pore pressure. due to the loading rl'\t) :::: e"'. Then, the corresponding quantity
due for arbitrary loading r(x) is given by

1', ,

/(x.y) :::: (Ij2rr) J ' fU.) Ptl(x.y)di. (52)

where r(i.) is the Fourier tmnsform (22) of r(x) with i. denoting the transform variable.
In this section. we usc this procedure to obtain the stress-intensity factor for uniform

shear loading over a distance I behind the crack edge:

r(x) = (r,,-r/)II(x+/). x < O. (53)

where lI(x) is the He.wiside step function. As exphlined hy RS. this is a simple model of a
she~lr t~lUlt. The loading is the ditferel1l.:e between an applied shear stress r" that arises from
large-scale tectonic forces and a resistive friction stress f,. assumed here to be constant. RS
'llso note that although the fault is assumed to be semi-infinite for mathematical simplicity.
the distance I can be adjusted so that the d'lstic stress field ncar the fault edge is the same
as that for a finite length fault.

The Fourier transform of lhe loading (53) is

f(i.) = - (L" - r,l( I - C'i'),li.. (54)

Applying (52) to the expression for the stress intensity 1~lctor (48) and using (Sol) yields
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- ( I - tl f-, I - e -"f

K = --.,--~-- ('or - '/ ) -.-- di..
_itI . ,. im O.lD (I.)

This equation can be rewritten in the form

where

is the stress intensity t:lctor for an elastic solid subjected to the same loading and

e "' ~ f'" , I - e"
h( VI/c) = -~.~""'----.-.--.---ds

4/lt" .. , .1'0- (.I'. 11,c)1II (.1')

(55)

(56)

(57)

(58)

is a n:al-valued dimensionless factor. The functions fj (.I'. ~.) and IiI (.I') arc given as follows:

whae

. [ni (.1') JD (.I'. ~,) = If + [2I.1'(/i - I )h'j. - I
1/ (.1',,') _

III (.1') = .1'1 :. (59)

II (.I"~')=(.I'-I~,)I:. If=(I-v)/(I-I',,). (60)

As suggested hy the notation. the runctions Iii (.1') and Ii (.I'. ~,) have their hranch cuts on
the positive imaginary axis of the complex .I' plane and arc ddined to have positive real
parts when .I' > O. By means of the same manipulations used hy RS. the integral (5S) can
be transformed to a 1'01'111 more suitable for numerical evaluation:

I f' l' oil [ 1 Jh(~')='l ,. 1/1 -(l-e )Re . 1, dl/l,
_IT - " f), (tli"'~')

(61 )

where 0, (1//1. ~,) is the limit of 6 (.I'. /) us .\' approuches the point 11/1 (1/1 > 0) from the right
on the complex .\' plune.

Il can eusily be shown that h( Vile) approuches one for VIle -t O. This result is expected
because, for very slow propugation. there is ample time for uny excess pore pressures to be
dissipated by tluid ditfusion and the material responds in drained fashion. Hence. the stress
intensity t:lctor is identical to that in an ordinury clastic body and K = KIlOIll ' In the
contrasting limit of VIle -t x, h( Vile) approaches If I = (I -I'..)/( I-\') < I. (Because
I'" ~ I', If ~ I.) RS rationalize this result in terms of the compatibility of deformation
between a region ncar the crack-tip responding in drained fashion and a surrounding
undrained region. Simons (1977) has given u more precise interpretation by means of a
boundary (uycr anulysis.

The integwl (61) is identic;.1 to th;lt found by Ruina (197R) in the problem oru steadily
propagating opening (Mode I) crack. For tensik loading the condition (18) arises from the
symmetry of the problem und, in this case. the pore pressure is continuous across the fault
plane. The coincidence of (61) with the result of Ruina (197S) means thut if the crack plane
is impermeable. the velocity dependence of the stress intensity factor is thc same whether
the loading is tensile or shear. Corresponding features have been noted in solutions for
instantaneous (Rudnicki. 1987) and steadily propagating (Rudnicki and Roelotfs, 1990)
plane strain dislocations. Consequently the feature seems to ne general although we know
or no demonstration of this.
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Fig. ~. A plot of the fault propagation criterion Gn,.m":( VIle) = G,n' based on the singular crack-tip
model (63) for various values or II = (1- v)!( 1- v.l. The results or Rice ,lnd Simons (1976) for the

permcable fault arc shown d<lshed. The values or GnnmiG,n. appro<lch Wfor I<lrge '·lie.

Thus far. we have assumed that hoth the speed of propagation ~. and the driving stress
on the ual"k fal:es !,,- !/l:an he presuihed independently. However. in al:tuality. the speed
at whil:h the fault propagates will depend on the driving stress. A simple criterion that
relatL's these quantities is that the fault propagates when the c1astil: cnergy released per unit
advanl:e of thc l:ral"k (i'd real:hes somc l:ritil:al value. say. G,,", Thc value of G"," is presumed
to hc l:haral:teristil: of thc material and indepcndcnt of the gcomctry and loading conditions.
Although this l:ritcrion takcs no spel:ilic al:l:Ount of thc al:tual prol:esscs of material hreak­
down ncar thc l:ral:k-tip. it is a good approximation whcn thc si/c of this hreakdown zone
is small l:Ompared with other dimensions of the prohlem. that is. for small sl:ale yielding
l:Onditions (Sce. e.g. Rice. I96X). However. as in the case of the permeahle fault. we will
find that at larger propagation speeds predictions based on this criterion become suspect
because the difrusion length cl V approaches the size of the breakdown zone. In this case.
a more elaborate model of the breakdown prol:ess is required.

The energy release rate is related to K hy the following well-known expression (Irwin.
1960; Rice. I96X):

(62)

Hence. substituting (56) and setting G'd = G"," for propagation yields

(63)

where Gn"," is defined by substituting Kn"", into (62). Gn"m is the energy release rate for a
crack propagating in an ordinary elastic solid and. as a result. represents the energy supplied
by the applied loads.

The ratio (63) is plotted in Fig. 2 for the range of values of {I considered by RS. For
example. the combination of \' = 0.2 and \'u = 0.4 leads to p= 4/3 which. according to RS.
is reasonable for a fissured rock mass. whereas they suggest a value of p = 5/3 as more
appropriate for clay soils. For comparison. the results of RS for the permeable shear crack
are shown as d'lshed lines. Figure 2 shows that for any value of {I. the ratio Gnom/G<ril is an
increasing function of the dimensionless speed measure VIle and hence of V. Because G"nl
is assumed to be const.mt. this means that an increase in the propagation speed requires an
increase in Gnnm and. hence. in the driving stress !,,-!r' Consistent with the behavior of K.
Gn"m/G"". approaches one as V....oand approaches pl as ~ ..... (x;.
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FACLT SPREADI:"G CRITERIa" BASED 0" P.-\L\IER RICE MODEL

As already noted. the fracture criterion based on a critical value of the ent:rgy reh:ase
rate is appropriate when small scale yielding conditions prevail. that is. when the inelastic
deformation accompanying the micromechanical processes of relative sliding occurs in a
zone that is smaller than all other charactt:ristic lengths in the probh:m. However. as the
speed of propagation V increases. the characteristic dirfusion length (' r' will eventually
become comparable to the size of this breakdown lone. In this case the singular crack-tip
model is no longer valid. Consequently. we follow RS and considt:r the Palmer and Rice
(1973) model which incorporates a finite size zone of breakdown processes at the crack tip
and is similar to cohesive zone models of tensile cracks (e.g. Dugdah:. 1960: Barenblatt.
1962). Detailed explanations of the model have been given by Palmer and Rice (1973) and
by RS. Summaries are contained in review articles by Rice (Ino. 1983) and Rudnicki
(1980. 1988).

The Palmer and Rice (1973) cohesive zone model has two main features. The first is
that shear stresses 'h. in excess of ',. resist relative slip in a zone behind the crack-tip
-UJ ~ x ~ O. These stresses oppose the driving stresses in such a way that the singular
stress at the crack tip is eliminated. The stress 'h arises from the micromechanical processes
resisting relative slip and. in general. depends on the local slip. However. for simplicity. we
take 'h as constant. Therefore. as explained in more detail by RS. the loading is the SUlll or
that given by (53) and the rollllwing:

,(.\) =: -(".-t,l. -(!) ~ x ~ O.

where the minus sign enters because rio resists slip. Because the stress intensity ractor for
unirorm loading behind the crack-tip is given hy (56) with (57). the Cllndition that the
singularity at the crack-tip vanish is simply the following:

('a - " )(Xljn:) I: II( VIle) - (,,, -', )(X(IIIn:) I ~ II( VU}!c) = O.

where II( ,.) is gi ven by (61 ). This eq uation relates the dri ving st ress 'a - " to the bn:a kdown
zone size /I). but is insullicient to determine the amount of slip required for the slip zone to
advance.

The seCllnd reature or the Palmer and Rice (1')73) model is that advance of the slip
zone occurs when the slip at the trailing edge of the breakdown zone is equal to a critical
value li,n, :

In on.kr to impkment this condition. it is necessary to calculate the slip induced by the SUIll

or the loadings (53) and (64). This is accomplished by employing the procedure summarized
by (52) with the generic runctionfreplaced by J and ti'" given by (50). Thus. the slip caused
by the loading (54) is given by

. (1-\')(,,,-,,)1 ..
()(x) = G .I/(Ixl t. r I/c). x < 0 (67)

where the function g is an integral defined in obvious fashion by use of (51) and (54) in
(52). As in RS. this expression for.ll is not very convenient for numerical evaluation and
the manipulations described by them are used to arrive at the following morc suitable
representation:
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The sliding displacement J(x) caused by the sum of the loadings (53) and (64) is
obtained by simple superposition. and the result of imposing (66) is the following:

(69)

It is. however. more convenient to express this criterion in terms of the parameters arising
in the singular crack-tip model. Palmer and Rice (1973) have shown that their model
provides an explicit interpretation for G"n, as the energy. in excess of that dissipated by the
residual friction n:sistance r,. required to advance the fault a unit distance:

f",nl

G"n, = [r(J}-r,]dJ.
"

(70)

In the simple Illodel employed here. the shear stress in the endzone is a constant rh and (70)
reduces to

Equations (71) and (65) can be used to rearrange (69) as follows:

Gn"," 4h~( V(J)/e)
(;,nl = 7th( ~ 'I,'e)[(//(I) I. ~h( VW/c).'I«(I)/I.~~~c)=I;(v/l~>.q([v;/~7~H

(71 )

(72)

where (;n"", is defined as oefore as the energy release rate for a crack in an clastic body
(without an eud/olll:).

The two eqns «15) and (72) can. in principle. oe solved to determine the endzone size
(I) and the driving stress r" - rf. For simplicity. however. we again follow RS and evaluate
(72) for a range of fixed values of wil. Endzone sizes appropriate for faults in situ are not
known with Illuch certainty out they arc generally thought to be small. Summaries of values
inkrn:d fwm laboratory and field observations have been given by Rice (1979a. 1980, 1983)
and Li (llJX7). In Fig. 3. wc have plottcd thc ratio Gnurn/G"",. as in (72). as a function of
I'/ie for (/)/1= 10 ~. 10 '. 10 ~ and 10- 1

• The results shown are for /J=(I-v)/
( I - \'..) = 4/3. For thc lowcr valucs of w/I. which are of gre~ltcr practical interest. the ratio
of Gn"",iC,," approaches rapidly thc value I as VI/e gocs to lero. This is expected since at

1.8

1.6

1.4

1.2

Fi~. J. The fault propa~ation criterion based on the Palmer and Rice (1973) cohesive zone model
(72) f,'r various ralins Ilf the endzone siTe (II tn fault length I. The curves shown arc for p = 4/3. As
shown. the curves approach fI for large values of VI/c. The range of VI/e that corresponds to

ohserved fault creep events. as e~plained in the te~t. is also indicated.
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the lower speed limit the response is completely drained (there is no excess pore pressure)
and the porous material oehaves exactly as an elastic solid with shear modulus G and
Poisson's ratio I' (drained). On the other hand, at the higher speed limit. the response is
undrained silll'c there is not en(lugh time for the dissipation of the excess pore pressure.
The material then oehaves c1;lstically with the same shear modulus (; out with the undrained
Poisson's ratio I'U' ;\ simple calculation reveals that (,'".",,/G,," approaches the value
If = (I ... 1')( 1-- I'J as /' goes to infinity, as indicated in "'ig. .I.

"'or intermediate values of VI/c, the oehavior of (,'""",/(;"",, in contrast to the oehavior
in the aosence of an end/lJne. is not a monolonic function of /·I/e. More specifically, the
ratio allains a maximum at some intermediate value of VI/c which depends on the ratio
wll. This maximum value is dill'crent for each wll and, for small values of (I)). approaches
IJ!. which is the maximum value in the aosence of the endzone. The shape of the curves in
Fig. .I suggests that for propagation speeds less than tha t corresponding to the maximum
v;l!ue of G""",/G,", fault propagation is staolc oecause an increase in the driving force is
needed to m;lke the fault spread faster. Beyond the peak of the curve. increases in propa­
gation speed occur with diminishing values of the driving force. Thus. the calculations
predict that quasi-static spreading is no longer possiolc and unstable dynamic propagation
occurs. The inclusion ofa tinile end/one si/e in the analysis results in a finite range of speeds
for which the coupled tleformationdilrusioll ctl'ccts discussed here staoili/e propagation.

The n:sults fllr the impermeaole 1~llllt are compared lo those of RS for the permeable
fault in Fig. 4. This ligun: plots G",,,"'G,," against 1'1/1' for two values of/!JJ, 10 I and 10 '.
and If = 4/.1. Although the results arc qualitatively similar. there are dilrerences in the
magnitude of the staoili/ing ctrect and the range of values of I'l.'c over which it occurs.
Consider. for example. the pair of curves corresponding to w/I = 10 '. At the peaks of the
curves. the values of (i""", Ge", arc cOll1paraole. l.ell) for the permeable fault and 1.76 for
the impermeaole. But the value of 1'1/1' at which the peak occurs for the pc:rmeaolc fault.
aoout 10', is an order of magnitude larger th;1I1 the corn:sponding value for the impermeaole
fault. Over the comlTlon rising portion of the two curves. I'l;'c less than about IO!. the
values of G,wm , G"" are significantly higher. as much as 27%. for the impermeable fault than
for the permeable. Hence. for this range of VI/c. the stabilizing effects of coupling between
deformation and diffusion arc more pronounced for the impermeable fault than for the
perrneaole. This result can oe rationalized qualitatively as follows: the geometry of the
problem tends to cause pore fluid to flow across the fault plane: this is possible for the
permeable fault. but for the impermeable. the pore fluid is forced to seck other less favorable
paths. Consequently. the energy needed to drive the fault at the same speed is greater for
the impermeahle fault.
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Observations of creep events for which both the slip length I and the speed of propa­
gation V have been measured are scarce. In Figs 3 and 4 we have indicated a range of
observed creep events based on RS's discussion of observations by King et al. (1973). They
cite slip lengths between 0.1 and 10 km and speeds mostly in the range of 1-10 km per day
with one event at 80 km per day. Roeloffs and Rudnicki (1984) summarize. in their Table
l. observations by Evans et al. (1981) and Goulty and Gilman (1978) of other episodic
creep events for which the propagation speed and slip length were measued. Slip lengths
were in the same range. 0.1-10 km. but propagation speeds were somewhat higher. from
about 0.8 to 48 km per day. Values of the diffusivity in the vicinity of faults are uncertain
and a summary of values by Rudnicki (1984) spans three orders of magnitude. from 0.01
to 10.0 m ~ s - I. RS use a value of c = 1.0 m~ s - I and. with I and V in the range noted
above. the corresponding range of VI cis 1_10 ' . Because of uncertainty in the value of Co

we have indicated a larger range 01'0.1-10.1.

PORE PRESSURE I:"DUCED ON THE FAULT PLANE

A major difference between shear crack propagation on permeable and impermeable
planes is the change in pore pressure induced on y = O. For the permeable plane. there is
no change In pore pressure on .I' = 0: for the impermeable. the pore pressure takes on
values that arc equal in magnitude and opposite in sign as .I' = 0 is .Ipproached through
positive and negative values. Change in pore pressure on the crack plane affects slip by
altering the frictional resistance. More specifically. inductillll of pore pressure alters the
effective compressive stress to which the rcsidual friction stress is proportional. Exper­
imental observations (e.g. Paterson. 1'J7X) and theoretkal considerations (Rice. 1977)
suggest that the appropriate form of the clrective stress for frictional sliding is the dilference
between lhe lolal compressive slress and the pore pressure. Iknce. the el1"cctive she.lr stress
on the fault hccomes

r(x) = f" - r, + IMIT,,(x. 0) +p(x. 0)] (73)

where III is a cocllicienl of friction and !" and f, arc the values at ambient normal stress and
pore pressure. [Because of (15). the lOtalnormal stress is zero on y = 0.1

As the pore pressure is diswntlnuous on)' = O. the frictional resistance decreases on
the sitle of the crack for which the pore pressure increases (.I' = 0 + for the loading and
geometry assumed here) and decreases on the other side. Although the positive and negative
l:ontributions might be thought to l:ancd. we argue. following a suggestion of Rice (personal
communication, 19S7). that the pore pressure increase. causing a decrease in frictional
resistance. is of greater significance in alrecting propagation: because the impermeable
crack idealizes a narrow, but tinite thickness. fault zone, the pore pressure within the zone
will vary rapidly but continuously between the values p(x. 0+) and p(x. 0 -) predicted from
the solution for the impermeable plane. If it is assumed that slip localizes on a surface
within the narrow fault zone. it is plausible that propagation will follow the path of least
resistance within the fault zone anti hence tend to propagate on the side where the porc
pressure increases and the frictional resistance decreases. Although observational evidence
that slip localizes to a surface within the fault zone is not clear. continuum solutions for
localization of deform.ltion in materials with constitutive relations representaive of rock
suggest that this will be the case, e.g. Rudnicki and Ricc (1975), Rudnicki (\977).

Including the alteration of the frictional resistance by the induced pore pressure in a
rigorous manner is a formidable problem. Because the pore pressure alters the effectivc
10.lding as indicated by (73). the techniques used in the pn.:ceding sections to calculate the
stress intensity factor and energy rcle.lse rate arc no longer applicable and numerical
methods arc rcquired ah inilio. Cmlsequently. we examine the effects of the induced pore
pressure on propagation indepcndently of the coupled deformation-diffusion effects that
have already been considered. More specifically. we c.llcul.lte the pore pressure induced on
y = 0" by the loading (53) and then estimate the ctfect on the propagation critcrion by
calculating the stress intensity factor tlue to the augmentctlloading (73). This procedure is
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similar to that used by Rice (1973, 1980) to calculate the stabilizing effect of suctions
induced by dilation in the endzone of a propagating shear band or shear fault.

The pore pressure induced by the loading (53) could be calculated by the procedure
summarized by eqn (52). But because the pore pressure induced by the periodic loading
(21) cannot be expressed in finite form, application of this technique is awkward. Conse­
quently, we use a different, though approximate. approach that takes advantage of a recent
result by Rudnicki and Roeloffs (1990) for the pore pressure induced by a plane strain
shear (gliding edge) dislocation propagating steadily on an impermeable plane. Rudnicki
and Roeloffs (1990) give the following expression for the pore pressure induced on r = 0"
by a dislocation of unit magnitude (the pore pressure on r = () is equal in magnituJe and
opposite in sign)

where

0,,1 0+ GO'/eltl "I' (x. ) =.----- P( r Xi 2c)
4(1-1',.)11

(7..q

(75)

and I" and II arc modified Bessel functions oforders zero and one, respectively (Abramowitz
and Stegun, Section 9.6,1964). The expression (74) applies for x ~ 0; the pore pressure is
identic<llly zero for x < O. Therefon:, by means of the standard procedures for superposing
dislocations (Rice, 1968; Bilby and Eshelby, 1968), the pore pressure induced hya sliding
discontinuity c)(x), for x < (). is

f'lIl .. c\)
p(\",O') = - 1" (~) p""I(.\. -~) d~, c., (76)

where lI(x) is the Heavisidc step function and the form of the upper limit takes advantage
of the vanishing of e5(x) for x ~ () and of p'!I,I(X, () • ) for x < ll.

For c)(x) we use the slip induced by the loading (53) in a cracked elastic solid with
undrained Poisson's ratio (Rice, 1968; RS):

where

. 4( I - I',.} .
J(x) =.. rrG (r" - r, )IJ (lxi/I)

. • • I 1 1 • [I + ;.1 2]
J(/.) = I. -1(1-1.) log I· ·-t·'·I -I. -I

(77)

(78)

The expression (77) with (78) is actually the diffen:nce between the dispbcellH:nt due to a
singular crack-tip field with K given by (57) and that due to the loading (53). Hence. there
is no stress singularity at the crack-tip, x = 0, as appropriate for an endzone that is much
smaller than the crack length I. The usc of the undmined Poisson's ratio provides :1 lower
bound on the actual slip; an upper bound is obtained by replacing I'" by I'. Hence, the ratio
of the bounds is fJ = (1 - v)/( I - v.).

Substitution of (77), with (78), into (76) and a change of integration vari:lolc yield the
following expression for the pressure on y = O' arranged in non-dimensional form:

(79)

where
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Fig. 5. Pressure. in nl1l1llimensillnal form {79l. induced on the impermeabl..: plane for thrc..: valu..:s
(If l·/e. Plot is fllr r = O' ; values for y = 0 - ar..: equal in magnitude and opposite in sign.

'[.(x/I. nc) = (l'1/2d f' .f(II)I'[(VI/2c)(lI+x//))dll.
II ,II) III d

(80)

/'(11) = dt; dll and l'(~) is given hy (75). r:igure 5 plots the left hand side of (79) against x/I
1'01' three values or I'I/e. I, 10. 100. the middle or the r,tnge representative of field conditions,
As shown. the maximum pore pressure increase occurs at x = -I. the trailing edge of the
loaded portion of the crack faces and im:reases with VI/e. The pressure decreases rapidly
with .\ ahead of the crack-tip. x> O. at least for VI/e greater than unity. and more
slowly 1'01' x < ·1, For I'I/e greater than ahout 10. the maximum pore pressure change is
proportional to the logarithm or I'I/e.

The magnitude of the pore pressure change. expressed as a percentage of the stress
dilre.:re.:nce.: r" - r,o de.:pe.:nds on the factor 2JI/retl, Rice.: and Cleary (1976) have inferred and
tahulate.:d value.:s of the.: porous l11e.:dia parameters entering (3) and (4), For the six rock
type.:s the.:y conside.:r. the.: ratio JI/II ranges from 0.43 to 0,76 and. for reasons discusse.:d by
Rice.: and Rudnicki (197')). the.: upper end of this range is probably more appropriate to
lield conditions. For the.:se.: value.:s or JI/II. the ratio 2JI/retl ranges from 0.27 to 0,48. For
1'1; e = 10.0, the.: Ie.:rt hand side.: of (79) is 1.6 for x = -I and, consequently. p( -I. 0") is 43­
77% or r,,- r,. II' the.: draine.:d Poisson's ratio is used in (77). values arc larger by a factor of
II. For I'/e an orde.:r or magnitude.: Iarge.:r and smaller. the values diller by factors of 1.6
and 0.50, respectively. Thus. the maximum pore.: pre.:ssure change can be a signifkant fraction
of the.: driving stre.:ss r,,- r,o Howe.:vcr. the stress intensity factor depends not only on the
maximum pressure change hut also on the distrihution.

The stress intcnsity factor 1\ due to a loading ,(x) applied to a semi-infinite crack is
given hy

Suhstitution of (73) yields

r(x)....... , dx,
(-x) I •

(81 )

whcre

1\ = I\num{1 +k(VI/c)} (82)
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Fig. 6. Etred of the pressure on the fault spreading criterion (1\5). Curves are shown f(lr two values
of It'''. {i = I yields an upper lxlund corresponding to the use of the undrained slip distribution in

(77); {I = 1.5 yields a lower h(lund corresp(lnding 1(1 the lise (If the drained slip distrihution.

,,,

["'JI 't J'Uk( l'llc) = - °11
I 7rI[

dx
r.(x!: U/c) 1 '

( - x) -
(S])

is the contrihution from the pressure and h""", is given hy (57), Because of the slow deL:ay
of r. as x -+ - '.t". (r."1'. ( - x) I, '), the integral is, however, formally divergent and it is

neL:essary to replace the lower limit by some finite value, Consistent with the interpretation
of I as the faultlcngth, we take - I to be the lower limit. With this replacement and a change

of variahle, k( l'lic) heL:omes

(2)1.'(1111 J~I ds
k( Vllc) = r.( -.I'; l'lle) ,.

7rI[ IJ .\.1 •
(S4)

Application of (62) to obtain the corresponding energy release rate and imposition of the

criterion Grc! = G,,,, yields

(85)

Figure 6 plots Gnom/G"'1 against Vile for J1lfl = 0.7 and 0.5, which are near the upper
and lower ends of the range for six rock types tabulated by Rice and Cleary (1976). and a

friction coefficient of (p = 0.6. In contrast to the previous results. G"om/Gmt is less than one
because the increase in pressure augments the stress intensity factor and decreases the
driving stress needed to propagate the crack at a given velocity. For e:wmplc. for /1/'[ = 0.7
and VI/e = 100, the energy required to drive the cra4.:k is only about 60% of that needed to
drive the cmek in an elastic solid and, hence, the required v:tlue of !" -!r is smaller by a
factor of 0,77 ( = 0.60 I '). Recall that the use of the undrained Poisson's ratio in (77) yields

a lower bound on the induced pressure and, correspondingly. an upper bound on Gnom/G"".
Figure 6 also shows the result for /1/'[ = 0.7 and f1 = 1.5, corresponding to the use of I' in

(77). For Vile = 100, (1"'''''/(;'''1 is reduced from 0.60 to 0.49.
The dependence of (I",,,,,IG,,,, on velocity can be rationalized in terms of the behavior

of the induced pressure: although the maximum pressure increases with velocity, Fig. 5
indicates that the region of significant pressure increase becomes more concentrated at
x = - I as the velocity increases. Recause the effect of the pn:ssure on the stress intensity
factor depends on the pressure induced on - I ~ x ~ 0 weighted by the inverse square root
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factor. the narrowing of the distribution eventually overcomes the increase in pressure.
Hence. for Vec between about 10°5 and 104 GnomiG<ot increases with velocity. For still
larger values of VI c. the ratio decreases slowly.

CO:-';CLliDI:--iG DISCliSSIO:--i

We have examined coupled deformation diffusion effects in the steady propagation of
a plane strain shear crack on an impermeable plane in a porous fluid-infiltrated solid. This
investigation is complementary to and uses. for the most part. the same methods as the
analysis by RS of shear crack propagation on a permeable plane.

When the effect of the pore pressure induced on the impermeable plane in diminishing
the frictional resistance is neglected. the results for the impermeable plane are qualitatively
similar to those for the permeable. In particular. coupling between deformation and
ditTusion is stabilizing in the sense that the energy that must be supplied by the applied
loads to drive the crack at a given velocity increases with velocity. For a simple model in
which the stress .It the crack-tip is singular. the energy th.tt must be supplied increases
monotonically with velocity and the ratio of the necessary energy to drive the crack at
infinite velocity to that for zero velocity is {lz. When a more detailed model of crack-tip
processes that includes a breakdown zone is used. the range of I'I/e for which coupled
deformation diffusion effects are stabilizing is finite. Thus. this analysis for an impermeable
plane. like that of RS for a permeable plane. predicts that there is a maximum velocity for
which these ell\:cts arc stabilizing, The predided maximum vdot.:ity is reasonably consistent
with ohservatinns although there is considerable unt.:ertainty in the parameters. particularly
the dilrusivity.

Although the results ltlr the impcrmeaole plane arc simil.tr to those for the permeable.
then.: arc signilit.:ant quantitative dilferenees. Spet.:ilically. ft)r VIle less than aoout 100. the
stabilizing elli.:l:ts arc greater. oy as mut.:h as 27'Y.•. for the impermeahle plane. Moreover.
the range of U!c for whit.:h stahilization occurs is .tbout an order of magnitude lower for
the impermea ole pia ne.

More dramatic difrerellce oetween the impermeable and permeahle eases results from
the alteration of pore pressure on the impermeable I~tult pl..me. The t.:hange in p{lre pressure
alters the ellixtive compressive stress (total compressive stress minus pore pressure) whil:h
in turn afli.:cts the friction"ll resist..tnl:e. The results indicate that the magnitude of the
maximum pressure change on the faultl:an be a signilicant fral:tion. 0.430.77. of the driving
stress. If one al:eepts the path of least resistance argument that suggests pore pressure
int.:reases. whkh redul:e the frictional resist.mce. arc more significant in allceting propa­
gation. then this clfect is destabilizing in the sense that the pore pressure increases the
ellcctive driving stress. The c"lkulations suggest that the nominal energy release rate required
to drive the crack can be reduced by 50% or more by comparison with that needed in a
purdy elastic solid. Although the induced pore pressure reduces the required driving stress.
the ratio Gnom/G""t increases by about 14% as VIle increases from 10 0S to \0:. Thus. because
an int.:rease in driving stress is needed to drive the crack at higher velocities within this
range. the induced pore pressure contributes to the stabilizing effects even though the value
of Gn",,,/G,,..t is less than that for a purely elastic solid.

For simplicity. the two elrects of the coupling between deformation and diffusion. the
stiffer response of the material surrounding the crack to f<.tpid deformation and the alteration
of the frictional resist..mce by pore pressure induced on the crack. have been studied
separately. In actuality. they ot.:cur simultaneously and are coupled. Determining the extent
to which the increase of Gn..m/G"..t due to the first effect may offset thc decrease due to the
set.:ond requires further study. An additional stabilizing elTect. which has not been considered
here. can result from dilation accompanying shear (Rice. 1973. 1980; Rudnicki and Chen,
1988). Finally. this paper has'cmphasized coupling between dcformation and pore fluid
diffusion as a possihlc mCl:hanism for episodic creep evcnts but it is important to acknowl­
edgc that a variety of other mechanisms have also been suggested. These include time and
ratc dependence of friction. thc coupling of the clastic crust to a more viscous substrate.
and thc viscoelastic response of fault zone materials.
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