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Abstract—Quasi-static shear crack propagation in a linear elastic fluid-saturated porous solid causes
a change of pore pressure on the crack plane if it is impermeable but not if it is permeable. Assuming
that the pore pressure induced on the cruck plane reduces the effective compressive stress (total
stress minus pore fluid pressure) and. as a result. the frictional resistance, we find that the energy
required to drive the crack is decreased by up to about 60% of the value required in a purely elastic
solid. The required energy decreases with velocity at low and high velocities, but increases with
velocity for Fl/c in the range of 10°*-10°, where V is the speed of propagation, [ is the loaded length
of the semi-infinite crack and c is the diffusivity. When the effect of the pore pressure induced on
the crack plane is neglected. the results are qualitatively similar to those of Rice and Simons (1976,
J. Geophys. Res. 81, 5322-5344) for the permeable crack: coupling between deformation and
diffusion stabilizes propagation in the sense that the energy that must be supplied to drive the crack
increases with velocity within a finite range of the ratio Ve, This range of Flic is about an order
of magnitude lower than that for the permeable crack, but includes the range cited above and s
within the range of observed creep events on the San Andreas fault.

INTRODUCTION

This paper analyzes the stress and pore pressure ficlds induced by a plane strain shear
(Mode 1) crack propagating steadily and quasi-statically in a lincar clastic, fluid-infiltrated
solid. The response of such a solid, unlike that of an ordinary elastic solid, depends on the
time scale of the applied loads. More specifically, the response is stitfer for loads that are
applied rapidly by comparison with the time scale of diffusion (undrained conditions) than
for loads that are applied slowly enough to allow time for pore pressure equilibration by
fluid mass diffusion (drained conditions). Consequently, the stress intensity factor of a
crack propagating quasi-statically through a diffusive solid depends on the velocity of
propagation. Furthermore, this dependence is different depending on whether the crack
plane is permeable or impermeable to the diffusing species.

Consideration of this problem is motivated by applications to the propagation of slip
on faults in the Earth’s crust. For reasons that will be explained in the body of the paper,
previous work on propagating shear cracks in fluid-saturated elastic solids (Rice and
Simons, 1976 ; Simons, 1977 ; Cleary, 1978) is appropriate when the crack planc is permceable
to the diffusing pore fluid. [Hereafter, we will, for brevity, denote the reference Rice and
Simons (1976) by RS]. However, faults in the Earth’s crust are often thought to be imper-
meable (Wu er al., 1975, Wang and Lin, 1978) because they contain clay or other fine-
grained material. Although slip is not always localized on a discrete plane, intense shear
deformation is typically confined to a narrow zone. Hence, for mathematical simplicity,
we idealize this zonc as an impermeable plane across which the slip displacement can be
discontinuous.

The purpose of this paper is to investigate the effects of impermeability of the crack
plane on the solution. Recent related work (Rudnicki, 1986, 1987 Rudnicki and Hsu,
1988 ; Rudnicki and Rocloffs, 1990) has shown that the specification of an impermeable
plane can have a significant effect on the stress and pore pressure fields induced by instan-
tancous and steadily moving shear dislocations.

Previous work on propagating cracks in fluid-infiltrated porous solids (RS ; Simons,
1977 Ruina, 1978 ; Cleary, 1978) has demonstrated that the stiffer response of the fluid-
saturated malerial to rapid deformations can contribute to stabilizing the crack against
rapid propagation. RS (also, Rice and Cleary, 1976) have discussed this stabilizing effect
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as a possible mechanism for the propagation of creep events (e.g. King et al.. 1973 ; Johnson
et al., 1974: Goulty and Gilman, 1978 Evans er af., 1981). These are slip events that
propagate too slowly. in the order of 1-10 km per day, to generate seismic radiation. This
stabilizing mechanism may also be a fuctor contributing to the occurrence of slow slip prior
to earthquakes. It is possibie that such slip could be accompanied by detectable effects that
would forecast the impending earthquake (e.g. Rice. 1979a: Rudnicki. 1988).

To make the problem mathematically tractable, we consider the propagation of a semi-
infinite shear crack. However. as is well-known from linear elastic fracture mechanics and
as discussed by RS, the loading on the semi-infinite crack can be chosen so that the stress
field near the edge of the crack is identical to that near a finite crack. To examine the effects
of the crack plane impermeability and compare our results with those of RS. we obtain the
velocity dependent stress intensity factor for a steadily propagating semi-infinite crack
loaded by uniform shear over u finite distance behind its tip. As for the permeable shear
crack analyzed by RS. the singular crack-tip model is found to be inadequate at high
propagation speeds. Consequently, we also present results for a modification of the Palmer
and Rice (1973) cohesive zone model used by RS. This model attempts to account, albett
approximately, for the processes of material breakdown near the crack-tip.

A second effect that occurs for the impermeable fault, but not for the permeuble, is
due to the change in pore pressure induced on the crack plane. Because the frictional
resistance to slip depends on the effective compressive stress, that is. the total compressive
stress minus the pore pressure, changes i pore pressure alter the resistance to slip. Although
the pore pressure induced on the impermeable crack plane is discontinuous and has opposite
signs on the two sides, we argue that the pore pressure increase, which reduces the effective
compressive stress and, hence, the frictional resistance, dominates. With this assumption,
we estimate the effect of the induced pressure on a criterion tor fault propagation and its
dependence on the velocity of propagation,

The remainder of the paper begins with a briel discussion of the equations governing
the response of a linear clastic diffusive solid. These equations were lirst formulated by Biot
(1941) in the context of fluid-saturated soils and they are formally identical to the equations
of tully coupled thermoclasticity (Biot, 1956 Rice and Cleary, 1976 Rice, 1979b). Indeed,
they are sufliciently general to deseribe the incarized response of any clastic solid containing
a diffusing species that can be characterized by two scalar variables. The form of the
equations to be described here is that introduced by Rice and Cleary (1976).

GOVERNING EQUATIONS

In a lincar elastc diffusive solid, two variables, in addition to the strains of the solid
matrix &, and the total stresses ,,, are needed to specity the response. These are conveniently
taken to be the fluid mass content per unit volume of porous solid m and the pore pressure
p. The latter is defined as the pressure, in excess of the ambient, needed to equilibrate any
fluid mass flux from small material elements. If the deformation is so slow relative to the
time scale of fluid mass diffusion that there i1s no alteration in pore fluid pressure, p =0
and the response is said to be druined. In this limit the expression for the strain components
reduces to the usual one of lincur clasticity :

261:1[ = G:/_[‘./(I +"')]r7kk‘5!/ (l)

where G is the shear modulus, v is the drained Poisson’s ratio and d,; is the Kronecker delta.

In the contrasting limit of undrained response the deformation is too rapid to allow
for fluid mass diffusion from material elements and, hence, m is equal to its reference value
n,. In this case, the alteration in pore fluid pressure is proportional to the negative of the
mean normal stress:

p= —Bay/3 (2)

where the constant of proportionality B is called Skempton’s cocfficient. Values of 8 range
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from zero to one with the lower limit attained for highly compressible pore fluid and the
upper for separately incompressible solid and fluid constituents. For undrained response,
the strains are again related to the stresses by (1) but with v replaced by v, the undrained
Poisson’s ratio. Since v < v, < 1/2, with limits attained under the same conditions as for
the limits of B. the undrained response is stiffer than the drained response.

For arbitrary deformations, the response will be neither drained nor undrained and
the expressions for the strains and alteration of m are as follows:

. v, —v) .
2Ge = 0, =IO+ i P .
9p(v,—V) . ,
—_— = 1 / 4
m—m, GBI+ (1) [6/3+p/B] 4)

where p, is the mass density of homogeneous pore fluid. Rice and Cleary (1976) (also. see
Rudnicki, 1985) give a full discussion of the development of these equations and their
relation to the formulation of Biot (1941). They also tabulate laboratory values of the
parameters v, v, and B. For plane strain deformation in the xy plane, the condition &,; =0
can be used to eliminate o, from (3) and (4):

L
2(;(‘.,“ = 0,3~ \'(0'“ -+ (T“,)(),” + B(l 4’_”"“)' /7(),” (5)
Ipplv, =)t | :

- 0= v [ (

M= ey 2T g (6)
where, now, (2, f/) = (1, 2) = (x, »).
The final constitutive equation is Darcy's law (Rice and Cleary, 1976)

‘Ix = —p(l'\.pl’/a-"‘x (7)

where ¢, is the mass flow rate in the o direction per unit arca and w is a permeability. The
permeability is more frequently expressed in the form v = A/y where y is the fluid viscosity
and k& has units of area.

In addition to the constitutive equations (5), (6) and (7) field equations expressing
equilibrium, compatibility and fluid mass conservation are needed. The equations of equi-
librium in the absence of body forces are as follows :

do, Jox+2d6, /0y =0 (8)
Ca, ]0x+la,, [0y = 0. )

The equation of plane strain compatibility can be expressed in terms of the mean stress and
pore pressure by means of the usual manipulations :

Vo +06,+2p) =0 (10)

where V3(...) = @°(..)/ex? + 3. )/dv and n = 3(v,—v)/[2B(1 +v,) (1 —v)]. An cquation
expressing conscrvation of mass for the fluid constituent is

eq jox, +mjée = 0. (h

This equation can be rewritten in terms of the stresses and pore pressure by substituting
(6) and (7) into (11) and combining with (10):



208 J. Wo Rup~ickt and Do AL KOUTSIBELAS

)

T(x)

.t = s m e
ppent—p— g p———— £
-
'

‘shear fault

e |

Fig. |. Coordinate svstem tor a semi-infinite shear fault. The fault moves to the right with a constant
speed 1 under the action of the shear stress ().

(eV:=2/cn o 4o, +2n/wpl =0 (12)
where gt = (v, —v)/(1 —v) and the ditfusivity ¢ is given by
¢ =2GRB7(0=v)(L+v,)7 [9 —=v ) (v, —v)]. (13

Comparison of (12) with (6) reveals that the quantity in square brackets in (12) is pro-
portional to the fluid mass content per unit volume. Hencee, as emphasized by Rice and
Cleary (1976), m satistics & homogencous diffusion equation but the pore pressure p, in
general, does not.

The governing eqns (8) (10) and (12) will be solved for the case of a semi-infinite shear
(Mode IF) crack located on the v-axis and moving steadily and quasi-statically at a constant
speed 17 (Fig. [). The crack is loaded by shear stresses t(x) which are applied to the crack
faces and move with the crack. The cruck and the applied loads are assumed to hive been
moving at this speed long enough so that transient effects have died out. Thus, the problem
is one of steady propagation and any explicit dependence on time ¢ can be eliminated by
adopting a coordinate system that moves with the crack-tip. Furthermore, for steady
propagation in the v direction, ¢/¢t can be replaced by — 1'¢ éx and, thus, (12) becomes

(V4 1¢ex) o, +a,+2n/wp] = 0. (14)

BOUNDARY CONDITIONS

Because of anti-symmetry about the crack plane p = 0. it is possible to formulate the
problem in the upper half plane with boundary conditions given on y = 0. The stress
component g, s anti-symmetric about v = 0 and, because the normal traction is continuous
across v = 0, it must be zero there:

g, (v0) =0, —v <x< 7. (15)

Similarly. the displacement component w, is anti-symmetric about y = 0. Although w«, is

discontinuous on the crack itself, it must be continuous ahead of the crack and, hence, must
vamsh there:

u(x.0)=0, 0y < 7. (16)

This condition can be rewritten in terms of the stresses and pore pressure by using the
strain - displacement relation ¢, = Cu/cx and the constitutive relation (5). The result is
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6. (. 0)+2np(x.0) =0, 0<x< x. (17)

where (13) has also been used.

The pore fluid pressure p is also anti-symmetric about » = 0. Hence. if p is continuous
on v = 0, it must vanish there and (17) reduces to ¢,,(x. 0) =0 (0 € x < x). These are
the boundary conditions used in previous studies of shear cracks in diffusive solids (RS
Simons. 1977: Cleary. 1978). In this case. ¢p ¢y. in general. will not be zero on y = 0 and,
hence, by Durcy’s law (7). fluid will flow across the x-axis. An alternative possibility is that
the crack plane models a shear fault that is impermeable to tluid flow. The condition
enforcing this requirement is

cp(x.0)icv=0, —x <x<*x. (18)

The pore fluid pressure is still required to be anti-symmetric about » = 0. but need not be
continuous and, hence, takes on equal and opposite values as the v-axis is approached from
above or below.

As already mentioned. the applied shear loading on the fault faces is described by t(x).
This provides the following boundary condition:

g x0)= —t(x), —x <x<0. (19)
As discussed by RS, r(x) represents the difference between an applied fartfield loading and
a resistive friction stress. Following RS, we will first solve the problem specified by egns
(8) (10) and (t4) and the boundary conditions (15) (19) for a periodic variation of shear
stress. Although this foading is of no real interest by itself, it is a basis for developing more

realistic solutions by superposition. In particular, we use the result to generate the solution
for a uniform distribution of shear stress over a distance / behind the crack-tip.

PERIODIC CRACK FACE LOADING

in this section, we derive the solution for a periodic loading of the crack faces given

by
t(x) = ' (x) =" (20)
where = (= 1)" *. With this loading, (19) becomes
g, (xv.0)= —c™, —w <yl 21
The solution procedure follows that of RS, In particular, we use Fourier transforms

and the Wiener-Hopf technique. The Fourier trunstform of a function f(x, v) is defined as
follows:

fik.v) = f Slvv)e ™tdy, (22
with inverse
. [ TR
Sy = J Sk, e™ dx. (23)
2n ),

Application of (22) to the governing eqns (8)-(10) and (14) yields ordinary differential
equations for the transforms of the stress components and pore pressure. The solution to
these equations s given by RS as follows:
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"ﬁ(K.vl‘)z “[J."(‘\"C””HH—B(K)C LIEEES (:4,
. - 7 27 (K) )
Gk vy =[l=mr)y]A{k)e ™" —=Clrye ™" — - —pem Blr)g ™" (25)

K- —n(K)

2k”

G"”(K..l') = [l "+'"I(K)_l'].‘l(’\')c miniy +C(’\}C minh + S B(K)e - nia) (36)

K- —n-(K)

. K s in(r) oty
Fory) = —{ikvAwR)+ ——-C(r) e ™" = —c——— B(r) e """ (27)
miK) K- —n(K)

where m(x) = x° and n7(x) = k' =1} ¢ and A(x). B(x) and C(x) are to be determined.
In order to ensure convergence ol the inverse transforms in the upper half-plane, v = 0.
m(x) and n(x) are subject to the following restrictions:

Re[m(xk)] 2 0. Ren(x)] 20 (28)

where “Re [...]7 stands for “the real part of [ ]7
Fourier transformution of the boundary conditions (15) and (18) yields

Cplw, )/ cr =10 (29)
and

G (k.0) = 0. (30)
Because the two remaining boundary conditions (17) and (21) do not apply on the entire

v-axis, the Fourier transforms ol the quanttics entering these equations are not known
completely. Thus, the Fourier transform of the shear stress on v = 0 s given by

0
g {x 0) = —( g (v.0)e “dy+F (v) (31
where the unknown function £ (x) is defined as tollows :
F(r) = f g, (x.0)ye *dy. 32)
6

As indicated by the superseript, £ (x) is analytic tn the lower halt of the complex x plane,
e, Im(w) < 0. Substitution of (21) yields /(4 —«) for the first integrul in (31), where 4 is
assumed to have a small negative imaginary part as needed to ensure convergence. Sub-
stitution of the expression for d,, (v, 0) from (27) into the left hand side of (31) then gives

2ikn(K) Bix N Cn) = F (x 1
KT =i (w) x) mi(K) (k) = (k)= HAi—r) (33)

Similarly. the Fourier transform of [a, (x, 0) + 2yp(x, 0)] is given by
G (k0)+ 205k, 0) = G (K) + J_ (7, (. 0)+2yp(x.O)fe "' dx (34)

where
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9
G (k) = J {0 (x,0)+2np(x.0)]e ™" dx (35)

is analytic in the upper half of the complex « plane, Im (x) = 0. The second integral in (34)
vanishes because of (17) and use of (24) and (25) to evaluate the left-hand side yields:

-+

ue
(1 =21y A(r) — W

) B(k) —C(r) = G*(x). (36)

The functions A. B and C can be expressed in terms of G* (k) by using (24) and (23)
to evaluate (29) and (30) and solving the resulting equations along with (36). The results
are as follows:

Aw) = ;%f";) (37)
Clr) = — ;{;}% {x + (e n’:((:)’} (39)
Substitution of (37) (39) into (33) then gives

This is a typical Wicner Hopt equation (Noble, 1958) that relates the two unknown half-
range transtorms G (k) and F (x). The solution procedure involves rearranging the
equation so that cach side is an analytic function of w in hulf-planes of the complex « plane.
If the hall-planes overlap, then cach side of the equation is a representation of the same
entire function. To this end, we follow RS and express m(x) and n#(x) as products of
functions analytic in the upper and lower half-planes:

m{KR) = m* (K¥m (K), n{x) =m{x)n (x). 4hH

The function m*(x) = ' * has a branch cut on the negative imaginary axis and, hence, is

analytic in Im(x) > 0. Similarly, m~(x) has a branch cut on the positive imaginary axis

from i to 1, where ¢ is a small positive constant that eventually will be made to approach

zero, and is analytic in Im(x) < . The function n (k) = (k —¥/¢)"? has a branch cut on

the positive imaginary axis from t¥/c to 120, Note that this choice of branch cuts is consistent

with the restrictions (28), that [m*(x)]* = x% and that [~ (x)]* = x¥ in the limit £ — 0.
The relations (41) can be used to rewrite (40) as follows :

G (K)( _ F (x) |

o= N (42)
2mt (k) m (RKID(R)  dk—=2ym (K)D (k)
where
) = ety M)
D (K) = i—ﬂ {l + (2ixpc/} )[H;,(K) l]} (43)

Because n~(x) is never equal to zero for Im(x) € 0 (as long as ¥V > 0)D " (x) is analytic for
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Im(x) €0 and. in fact. for Im(x) < &. Furthermore. D (k) # O in the lower half-plane.
approaches 1 (1 —g) as [x] — 0. and approaches [ as |x] — 7.

The left hand side of (42) s analvtic in the upper halt-plane but the right hand side
still has a pole in the lower half-plane at & = /£ (Recall that £ has a small negative imaginary
part). However, the right hand side can be made analytic by subtracting an appropriate
term from both sides. The resuft is the destred rearrangement :

le(K) L I -
K)  x—a)m (DD (5)

m "( K)

F b o ] "
T m (k)D'(K) 1K —4) m"(K)D'(K) m (AD (AT el

Now, the left-hand side is analytic for Im(x) > 0. the right-hand side is analytic for
Im(x) < 0 and the two sides are identical on the real x axis. Thus. each side of (44) is the
analytic continuation of the other and both are equal to an entire function. say H(x).

The function H(x) can be determined tfrom the asymptotic behavior of (34). Because
of the requirements of bounded strain energy. both ¢ “(x) and F (x) approuach zero as
In] — 7. As aresult, both sides of (44) tend to zero as [x] — » in the appropriate domain
of analyticity. By means of Liouville™s theorem (e.g. Carrier ef «f., 1966). we can conclude
that F(x) is identically zero in the entire & plane. Equating the left hand side of (44) to zero
vields

2t (k)

G (K) = — (x _;_),” (/)I) (';) .

(43

Substitution into (37) - (IY) yiclds expresstons for A, Band C. In principle, the solutions
for the pore pressure and stress components can be obtained by substituting the results for
A B and Cianto (24) (27) and using the Fourier inversion (23). For example, the shear
stress a4 1s given by

P l e I W iRy ) K -
0'“(.\.,1)-27[“““)", a0 Gl =it () —IK)

(2/1(1) ["’('\_) ¢ magy "'(\.-)C m(»«h]} cm\ (lN (4())
K

Although the integrals in (46) cunnot be expressed in closed form, it is possible to evaluate
them as r — 0, where r = (v7+17)" %, The basic strategy is to transform the integrals to
contours in the complex x plane on which the exponents are real and negative. Approxi-
mation for small r then leads to the asymptotic expression :

I%
a, = (3;[',1—) pacos (0:2) [1 = sin (0/2) sin (30/2)] + O(1) 47)

where

. I—l )
A T (D (A (48)

is the stress intensity factor for the loading () = ¢*. The expression for a, is identical
in form to the ficld ncar a Mode [ crack in a lincar elastic solid (Rice, 1968). but. of course,
here the stress intensity factor K depends on the velocity and diffusivity. The resuit for the
stress intensity factor (48) has the same form as that obtained by RS for the permeable
fault, but differs in the expression for D (4).
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Similarly, the other stress components can be shown to approach the form of the
linear elastic crack-tip field as r — 0. Asymptotic evaluation of the pore pressure is more
formidable. Because of cancelling terms the calculation requires considerable care. A more
direct approach is to use a boundary layer analysis of the governing equations {Simons.
1977 . Rudnicki. 1990). By either method. it can be shown that the pore pressure is bounded
and finite as r — 0.

Later. we will also need the expression for the slip d(x) on the crack which. because
of anti-symmetry. is equal to Ju (x. 07). Use of the strain displacement relution ¢,, = u, ¢x
and the constitutive relation (5) leads to the following expression for the slip on x € 0:

X

o(x) = [(! -\*),,’Glf [ (v 0+ 2np(x. 0)] dx. (49)
3
Inversion of (34) and substitution of {45} yields

| Y . v
O(x) S S S J [(L=e*) m" (KK —=2)]dx. (50)

- r

This integral can be evaluated as described by RS and, again, the result is identical in form
to theirs but with o different expression for D

At —vyeterfie "lm (A

o) = GiD (3)

(5
where erf ($) is the error function {Abramowits and Stegun, 1964).

UNIFORM SHEAR LOADING OVER A DISTANCE /

The solution obtained in the last section can be used to develop the solution for any
arbitrary loading by Fourier superposition. Let £ denote any ficld quantity, for example,
stress or pore pressure, due to the toading ©9(y) = ¢”*. Then, the corresponding quantity
due for arbitrary loading t{x) is given by

i * #
Sy = (172m) J 23) S (x.y) di (52)
where T(£) is the Fourier transform (22) of t(x) with / denoting the transform variable,

In this section, we use this procedure to obtain the stress-intensity factor for uniform
shear loading over a distance / behind the crack edge:

) = (r,—, ) H(x+!{), x<90, (53)

where £7(x} ts the Heaviside step function. As explained by RS, this is a simple model of a
shear fault. The loading is the difference between an applied shear stress t, that arises from
large-scale tectonic forees and a resistive friction stress 1, assumed here to be constant. RS
also note that although the fuult is assumed to be semi-infinite for mathematical simplicity,
the distance / can be adjusted so that the clastic stress field near the fault edge is the same
as that for a finite fength fault.

The Fourier transform of the loading (53) is

T(A) = —(t,—t) (1 =€) 1h. (54)

Applying (52) to the expression for the stress intensity factor (48) and using (54) yiclds
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P _(,'—”( o d-e — d 55
=7 R B o Y T St (53)

This equation can be rewritten in the form
K=K, nh(Vl ) (56)
where
Koom = (1, =7, )8/ )" * (57)

ts the stress intensity factor for an elastic solid subjected to the same loading and

e’ 3 + I '—C“
Vlie) = — —— B S
hhtic) 4t ” j c sD s Ve () ds (38)

is a real-valued dimensionless factor. The functions D (s, ;) and 4t (s) are given as follows :

. mo(y) . -
D (v =p+Rs(p=-0 .- - =1 Heo(s) = 5" (59)
no(s.7) -
where
noy) ==t ==yl ~-v,). (60)

As suggested by the notation, the Tunctions e (s) and 4 (s, 7) have their branch cuts on
the positive mmaginary axis of the complex s plane and are defined to have positive real
parts when s > 0. By means of the same manipulations used by RS, the integral (58) can
be transformed to a form more suitable for numerical evaluation :

N VY R l
/'(’)—Zn”J:, ot =c )RL[ﬁ, (l'//‘y)Jtl'ﬁ» (61)

where D, (uf. ) is the limit of D (s, 7) as s approaches the point nj (i > 0) from the right
on the complex s plane.

It can casily be shown that #(V1/¢) approaches one for Fij¢ — 0. This result is expected
because, for very slow propagation, there is ample time for any excess pore pressures to be
dissipated by fluid diffusion and the material responds in drained fashion. Hence, the stress
intensity factor is identical to that in an ordinary clastic body and K = K. In the
contrasting limit of Ve — », h(Vl/¢) approaches 1= (1 —v,)/(} —v) < |. (Because
v, = v, # 2 1) RS rationalize this result in terms of the compatibility of deformation
between a region near the crack-tip responding in drained fashion and a surrounding
undrained region. Simons (1977) has given a more precise interpretation by means of a
boundary layer analysis.

The integral (61) is identical to that found by Ruina (1978) in the problem of a steadily
propagating opening (Modc 1) crack. For tensile loading the condition (18) arises from the
symmetry of the problem and, in this casc, the pore pressurce is continuous across the fault
plane. The coincidence of (61) with the result of Ruina (1978) means that if the crack plane
is impermeable. the velocity dependence of the stress intensity factor is the same whether
the loading is tensile or shear. Corresponding features have been noted in solutions for
instantancous (Rudnicki. 1987) and steadily propagating (Rudnickt and Rocloffs, 1990)
plane strain dislocations. Conscquently the feature scems to be general although we know
of no demonstration of this.
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Fig. 2. A plot of the fault propagation criterion G,..h*(Fl/¢) = G, based on the singular crack-tip
model (63) for various values of ff = (1 —v)/(1 —v,). The results of Rice and Simons (1976) for the
permeable fault are shown dashed. The values of G oG, approach 7 for large Fljc.

Thus far, we have assumed that both the speed of propagation ¥ and the driving stress
on the crack faces 1, — 1, can be preseribed independently. However, in actuality, the speed
at which the fault propagates will depend on the driving stress. A simple criterion that
relates these quantities is that the fault propagates when the clastic energy released per unit
advance of the crack 7, reaches some critical value, say, G.,.. The value of G, is presumed
to be characteristic of the material and independent of the geometry and foading conditions.
Although this criterion takes no specific account of the actual processes of material break-
down near the cruck-tip, it is a good approximation when the size of this breakdown zone
is small compared with other dimensions of the problem, that is, for small scale yiclding
conditions (Sce, e.g. Rice, 1968). However, as in the case of the permeable fault, we will
find that at larger propagation speeds predictions based on this criterion become suspect
because the diffusion fength ¢f 1 approaches the size of the breakdown zone. In this case,
a more claborate model of the breakdown process is required.

The energy release rate is related to K by the following well-known expression (Irwin,
1960 ; Rice, 1968) :

G = K'(1 -v)/2G. (62)
Hence, substituting (56) and setting G, = G, for propagation yiclds
Gnom,'/Gcnl = [/'( V[/(')] o2 (63)

where G, ts defined by substituting K., into (62). G, is the encrgy release rate for a
crack propagating in an ordinary clastic solid and, as a result, represents the energy supplicd
by the applied loads.

The ratio (63) is plotted in Fig. 2 for the range of values of f considered by RS. For
example, the combination of v = 0.2 and v, = 0.4 lcads to § = 4/3 which, according to RS,
is reasonable for a fissured rock mass, whereas they suggest a value of ff = 5/3 as more
appropriate for clay soils. For comparison, the results of RS for the permeable shear crack
are shown as dashed lines. Figure 2 shows that for any value of f8, the ratio Gom/Geriq is an
increasing function of the dimensionless speed measure V//c and hence of V. Because G,
is assumed to be constant, this means that an increase in the propagation speed requires an
increase in G, and. hence. in the driving stress t, — t,. Consistent with the behavior of K,
G oom! G approaches onc as ¥'—0 and approaches 2 as |'— .

SAS 27:1.F
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FAULT SPREADING CRITERION BASED ON PALMER RICE MODEL

As already noted. the fracture criterion based on a critical value of the energy release
rate is appropriate when small scale yielding conditions prevail. that is. when the inelastic
deformation accompanying the micromechanical processes of relative sliding occurs in a
zone that is smaller than all other characteristic lengths in the problem. However, as the
speed of propagation F increases. the characteristic ditfusion length ¢ §7 will eventually
become comparable to the size of this breakdown zone. [n this case the singular crack-tip
model is no longer valid. Consequently, we follow RS and consider the Palmer and Rice
(1973) model which incorporates a finite size zone of breakdown processes at the crack tip
and is similar to cohesive zone models of tensile cracks (e.g. Dugdale, 1960 ; Barenblatt.
1962). Detailed explanations of the model have been given by Palmer and Rice (1973) and
by RS. Summuaries are contained in review articles by Rice (1980, 1983) and Rudnicki
(1980. 1988).

The Palmer and Rice (1973) cohesive zone model has two main features. The first is
that shear stresses 1. in excess of t,. resist relative slip in a zone behind the crack-tip
—w < v £ 0. These stresses oppose the driving stresses in such a way that the singular
stress at the crack tip is climinated. The stress 1, arises from the micromechanical processes
resisting relative slip and. in general. depends on the local slip. However, for simplicity, we
take 1, as constant. Therefore, as explained in more detail by RS, the foading is the sum of
that given by (53) and the following:

tv) = —(t,—1,). —m<x <O (64)

where the minus sign enters because ¢, resists slip. Because the stress intensity factor for
uniform loading behind the crack-tip is given by (56) with (57). the condition that the
singularity at the crack-tip vanish is simply the following

(t, =1, )BUm)" “h(Vlfe) = (T, — 1) (Se/m) ' “h(Vw/e) = 0, (65)

where () 1s given by (61). This equation relates the driving stress t, — 7, to the breakdown
zong size o, but is insuflicient 1o determine the amount of slip required for the slip zone to
advance.

The second feature of the Palmer and Rice (1973) model is that advance of the slip
zone occurs when the slip at the trailing edge of the breakdown zone is cqual to a critical
value d.,

My = —w) =0, (06)

of the loadings (53) and (64). This is accomplished by employing the procedure summarized
by (52) with the generic function f'repliaced by J and 6 given by (50). Thus, the slip caused
by the loading (54) is given by

S(x) = (lf""((’""”’[;,(|,\-| V), x<0 (67)

where the function g is an integral defined in obvious fashion by use of (51) and (54) in
(52). As in RS, this expression for ¢ is not very convenient for numerical evaluation and
the manipulations described by them are used to arrive at the following more suitable
representation:

2(" I
W) = 5] P2 _ -t v [ ] s PR
g(x.7) nﬁ 2(xp/m)’ " —e erf{(2f)' °]} Re [«lf:D, (ir//.;-)] di. (68)
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The sliding displacement d(x) caused by the sum of the loadings (53) and (64) is
obtained by simple superposition. and the result of imposing (66) is the following:

. l1—v w Vi Vo
O = G Ii(h— )y (7 . ?> —(Th— r,)(ug( 1, T>:I (69)

It 1s. however. more convenient to express this criterion in terms of the parameters arising
in the singular crack-tip model. Palmer and Rice (1973) have shown that their model
provides an explicit interpretation for G, as the energy. in excess of that dissipated by the
residual friction resistance t,, required to advance the fault a unit distance:

O em

Gcm = J‘ [T((S) - T.',] d() (70)
0

In the simple model emploved here. the shear stress in the endzone is a constant 1, and (70)

reduces to

Gunl = (rh—t/)(scnt' (7l)
Equations (71) and (65) can be used to rearrange (69) as foliows :

Groom dh*(Vnlc) 7
Gow  Th(VLO[Um) 2 h(Ven)e) g, Viic) —h(Viljc)g(l, Vw/c)] (72)
where (7, 18 defined as before as the energy release rate for a crack in an clastic body
(without an endzone).
The two eqns (65) and (72) can, in principle, be solved to determine the endzone size
o and the driving stress ¢, — .. For simplicity, however, we again follow RS and evaluate
(72) for a runge of tixed values of w/l. Endzone sizes appropriate for faults in situ are not
known with much certainty but they are generally thought to be small. Summaries of values
inferred from luboratory and ficld observations have been given by Rice (1979a, 1980, 1983)
and Li (1987). In Fig. 3, we have plotted the ratio Goom/Geu as in (72), as a function of
Ve tor w/l=10 % 10 ', 10 * and 10", The results shown are for = (1~v)/
(I —v,) = 4/3. For the fower values of w/l, which are of greater practical interest, the ratio
Of Gy G approaches rapidly the value 1 as Vi/e goes to zero. This is expected since at

1.8-
1.6
Ghnom
GC"!!
1.4
1.2
range for V:z1 to 10 Km/day
/1:0.1 o 10Km, and c= 0.1 10 10m¥/sec.
10w | T 70 1 1 b .
1072 10° 102 10* 10°
vi/e

Fig. 3. The fault propagation criterion based on the Palmer and Rice (1973) cohesive zone model

(72) for various ratios of the endzone size m to fault length £ The curves shown are for § = 4/3. As

shown, the curves approach f# for large values of Vije. The range of Vi/c that corresponds to
observed Fault creep events, as explained in the text, is also indicated.
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,/// range of observed

// / creep events
T

1.0 ey Y o S S wr ST S
107 10° 10° 10* 108
vL/c
Fig. 4. A comparison of the cohesive zone fault propagation criterion (72) for the permeable
(dashed) and impermeable faults. The curves are shown for ff = 4-3 and two values of o, where
e is the endzone size and 7 is the fault length.

the lower speed limit the response is completely drained (there is no excess pore pressure)
and the porous material behaves exactly as an clastic solid with shear modulus G and
Potsson’s ratio v (drained). On the other hand. at the higher speed limit, the response is
undrained since there is not cnough time for the dissipation of the excess pore pressure,
The material then behaves elastically with the same shear modulus ¢ but with the undrained
Poisson’s ratio v,. A simple calculation reveals that G, /G, approaches the value
fo= (1) (1 —v)as F goes toinfinity, as indicated in Fig. 3.

For intermediate values of Flie, the behavior of (/e 10 contrast to the behavior
in the absence of an endzone, is not a monotonic function of Fl/e. More specifically, the
ratio attains a maximum at some intermediate value of Fije which depends on the ratio
w/l. This maximum value is different for cach w/f and, tor small values of w1, approaches
7. which is the maximum valuce in the absence of the endzone, The shape of the curves in
Fig. 3 suggests that for propagation speeds less than that corresponding to the maximum
value of G,/ G, fault propagation is stable because an increase in the driving force is
needed to make the fault spread taster. Beyond the peak of the curve, increases in propi-
gation speed occur with dimintshing values of the driving force. Thus, the calculations
predict that quasi-static spreading is no longer possible and unstable dynamic propagation
occurs. The inclusion of a fintte endzone size in the analysis results in a finite range of speeds
for which the coupled deformation -diffusion effects discussed here stabilize propagation.

The results for the impermeable fault are compared to those of RS for the permeuble
fault in Fig. 4. This figure plots G, G against F7e for two values of «/, 10 "and 107,
and ff=4/3. Although the results are quahlitatively similar, there are differences in the
magnitude of the stabilizing effect and the range of values of F7'¢ over which it occurs.
Consider, for cxample, the pair of curves corresponding to o/l = 107 . At the peaks of the
curves, the values of (.., G, are comparable, 1.69 for the permeable fault and 1.76 for
the impermeable. But the value of J¢ at which the peak occurs for the permeable fault,
about 10, is an order of magnitude larger than the corresponding value for the impermeable
fault. Over the common rising portion of the two curves, F/¢ less than about 107, the
values of G, G, itre significantly higher, as much as 27%, for the impermeable fault than
for the permeable. Hence. for this range of /¢, the stabilizing cffects of coupling between
deformation and diffusion are more pronounced for the impermeable fault than for the
permeable. This result can be rationalized qualitatively as follows: the geometry of the
problem tends to cause pore fluid to flow across the fault planc; this is possible for the
permeable fault, but for the impermeable. the pore fluid is forced to seck other less favorable
paths. Conscquently, the cnergy needed to drive the fault at the same speed is greater for
the impermeable fault.
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Observations of creep events for which both the slip length / and the speed of propa-
gation §” have been measured are scarce. In Figs 3 and 4 we have indicated a range of
observed creep events based on RS’s discussion of observations by King et al. (1973). They
cite slip lengths between 0.1 and 10 km and speeds mostly in the range of 1-10 km per day
with one event at 80 km per day. Roeloffs and Rudnicki (1984) summarize. in their Table
1. observations by Evans er al. (1981} and Goulty and Gilman (1978) of other episodic
creep events for which the propagation speed and slip length were measued. Slip lengths
were in the same range, 0.1-10 km. but propagation speeds were somewhat higher, from
about 0.8 to 48 km per day. Values of the diffusivity in the vicinity of faults are uncertain
and a summary of values by Rudnicki (1984) spans three orders of magnitude, from 0.01
to 10.0 m* s~'. RS use a value of ¢ = 1.0 m" s~ ' and. with / and I in the range noted
above, the corresponding range of 17 ¢ is 1-10". Because of uncertainty in the value of c.
we have indicated a larger range of 0.1-10".

PORE PRESSURE INDUCED ON THE FAULT PLANE

A major difference between shear crack propagation on permeable and impermeable
planes is the change in pore pressure induced on » = 0. For the permeable plane, there is
no change in pore pressure on v = 0 for the impermeable. the pore pressure takes on
values that are equal in magnitude and opposite in sign as p = 0 is approached through
positive and negative values, Change in pore pressure on the crack plane affects slip by
altering the frictional resistunce. More specifically, induction of pore pressure alters the
effective compressive stress to which the residual friction stress is proportional. Exper-
imental observations (c.g. Paterson, 1978) and theoretical considerations (Rice, 1977)
suggest that the appropriate form of the effective stress for frictional shiding is the difference
between the total compressive stress and the pore pressure. Hence, the cffective shear stress
on the fault becomes

vy =1, ~t, + o, (o, 0+ pla, )] (73)

where ¢ is a cocflicient of friction and ¢, und t, are the values at ambient normal stress and
pore pressure, [Because of (135), the total normal stress is zero on y = 0.]

As the pore pressure is discontinuous on 3 = 0, the frictional resistance decreases on
the side of the crick for which the pore pressure increases (3 = 0" for the loading and
geometry assumed here) and decreases on the other side. Although the positive and negative
contributions might be thought to cuncel, we argue, following a suggestion of Rice (personal
communication, 1987), that the pore pressure increase, causing a decrease in frictional
resistance, is of greater significance in affecting propagation: because the impermeable
crack idealizes a narrow, but finite thickness, fault zone, the pore pressure within the zone
will vary rapidly but continuously between the values p(x, 0%} and p(x, 07) predicted from
the solution for the impermeable plane. If it is assumed that slip localizes on a surface
within the narrow fault zone, it is plausible that propagation will follow the path of least
resistance within the fault zone and hence tend to propagate on the side where the pore
pressure increases and the frictional resistance decreases. Although observational evidence
that slip localizes to a surface within the fault zone is not clear, continuum solutions for
localization of deformation in materials with constitutive relations representaive of rock
suggest that this will be the case, e.g. Rudnicki and Rice (1975), Rudnicki (1977).

Including the alteration of the frictional resistance by the induced pore pressure in a
rigorous manner is a formidable problem. Because the pore pressure alters the effective
loading as indicated by (73). the techniques used in the preceding sections to calculate the
stress intensity factor and energy refeuse rate are no longer applicable and numerical
methods are required ab initio. Consequently, we examine the effects of the induced pore
pressurc on propagation independently of the coupled deformation~diffusion effects that
have already been considered. More specifically, we calculate the pore pressure induced on
v = 0" by the loading (53) and then estimate the effect on the propagation critcrion by
calculating the stress intensity factor due to the augmented loading (73). This procedure is
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similar to that used by Rice (1973, 1980) to calculate the stabilizing effect of suctions
induced by dilation in the endzone of a propagating shear band or shear fault.

The pore pressure induced by the loading (33) could be calculated by the procedure
summarized by eqn (52). But because the pore pressure induced by the periodic loading
(21) cannot be expressed in finite form. application of this technique ts awkward. Conse-
quently, we use a different. though approximate. approach that takes advantage of u recent
result by Rudnicki and Roeloffs (1990) for the pore pressure induced by a plane strain
shear (gliding edge) dislocation propagating steadily on an impermeable plane. Rudnicki
and Roeloffs (1990) give the following expression for the pore pressure induced on v = 0~
by a dislocation of unit magnitude (the pore pressure on v = 0 1s equal in magnitude and
opposite in sign)

G(Fieu .
a4y — 7T e I
P (x.07) A0 vy Pl x:2¢) (74)
where
P& = exp (=T -1 ()} (75)

and /, and /, are modified Bessel functions of orders zero and one, respectively (Abramowitz
and Stegun, Scction 9.6, 1964). The expression (74) applics for x 2 0 the pore pressure is
identically zero for x < 0. Therefore, by means of the standard procedures for superposing
dislocations (Rice, 1968 ; Bilby and Eshctby, 1968), the pore pressure induced by a sliding
discontinuity d(x), for x < 0, 1s

(Y7 /Y l’(
pe.0) = = J RVAEENER (76)
. b3

where £(x) is the Heaviside step function and the form of the upper imit tiakes advantage
of the vanishing of 3(x) for x = 0 and of p™'(x, 0*) for x < 0.

For 8(x) we use the slip induced by the loading (53) in a cracked clastic solid with
undrained Poisson’s ratio (Rice, 1968 ; RS):

4 -v)

ox) = 6 (t, =t M/Uxl]) (77)
where
A1 2
j.(;_)=,-_n:_g(l—}.)logl[:-i:_'llll. (78)

The expression (77) with (78) is actually the difference between the displacement due to a
singular crack-tip field with K given by (57) and that duc to the loading (53). Hence, there
is no stress singularity at the crack-tip, x = 0, as appropriate for an endzone that is much
smaller than the crack length /. The use of the undrained Poisson’s ratio provides a lower
bound on the actual slip ; an upper bound is obtained by replacing v, by v. Hence, the ratio
of the bounds is 8 = (1 —v)/(1 —v,).

Substitution of (77), with (78), into (76) and a change of integration variable yicld the
following expression for the pressure on y = 0 arranged in non-dimensional form:

TP ) S (L V) (79)

where
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Fig. 5. Pressure. in nondimensional form (79). induced on the impermeable plane for three values
of F/ ¢, Plotis for ¢ = 0 values for v = 07 are equal in magnitude and opposite in sign,

.

(L) = (l'[,’l(')f LGPV 20) (e + x/D] du, (80)

fel-DHE ©)

S () = df;dicand P(E) s given by (75). Figure S plots the left hand side of (79) against x//
for three values of F/e, 1, 10, 100, the middle of the range representative of ficld conditions.
As shown, the maximum pore pressure increase occurs at x = —/, the trailing edge of the
loaded portion of the crack laces and increases with Ve, The pressure decreases rapidly
with v abead of the crack-tip, x > 0, at least for Fl/¢ greater than unity, and more
slowly for v < -/ For Flje greater than about 10, the maximum pore pressure change is
proportional to the logarithm ot F//e.

The magnitude of the pore pressure change, expressed as a percentage of the stress
difference ¢, —1,. depends on the factor 2g/ny. Rice and Cleary (1976) have inferred and
tabulated values of the porous media parameters entering (3) and (4). For the six rock
types they consider, the ratio g/y ranges from 0.43 to 0.76 and, for rcasons discussed by
Rice and Rudnicki (1979), the upper end of this range is probably more appropriate to
ticld conditions. FFor these values of w/y, the ratio 2u/ny canges from 0.27 to 0.48. For
Fle = 10.0, the left hand side of (79) is 1.6 for x = ~/and, consequently, p(—1/,07) is 43—
77% of t,—~1,. I the drained Poisson’s ratio is used in (77), values arc larger by a factor of
f. For e an order of magnitude larger and smaller, the values ditfer by factors of 1.6
and 0.50, respectively. Thus, the maximum pore pressure change can be a significant fraction
of the driving stress t,—1,. However, the stress intensity factor depends not only on the
maximum pressure change but also on the distribution.

The stress intensity factor K duce to a loading t(x) applied to a semi-infinite crack is
given by

2 [ v
C= e 81
K nl.J‘_L (_x)l-d‘ (81)
Substitution of (73) yiclds

K = Koo {1 +k(Flj0)} (82)

where
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Fig. 6. Effect of the pressure on the fault spreading criterion (85). Curves are shown for two values
of wn. # = [ yvields an upper bound corresponding to the use of the undrained ship distribution in
(77 f = LS yiclds a lower bound corresponding to the use of the driined ship distribution.

. 201 ppe R dx
k(Hte)y = (Vi e) - (83)
! LTI (—v) -
ts the contribution from the pressure and X, is given by (57). Because of the slow decay
of Tas x=—x (X7 (—x) "), the integral 1s, however, formally divergent and it s
necessitry Lo replace the lower limit by some finite value. Consistent with the interpretation
of fas the fault fength, we take —/to be the lower limit. With this replacement and a change
of variable, A(41/¢) becomes

~
!

2! ‘T(/)“
my

ds

k(Vlje) = E(=siVlfe) . (84)

0

Application of (62) to obtaiin the corresponding energy release rate and imposition of the
criterion Gy = G, yiclds

G“UI" — l
Gow (1 +k(VIO]* (859)

Figure 6 plots Goom/G. against Ve for u/n = 0.7 and 0.5, which are near the upper
and lower ends of the range for six rock types tabulated by Rice and Cleary (1976), and a
friction coetficient of ¢p = 0.6. In contrast to the previous results, Gom/ Gy 18 less than one
because the increase in pressure augments the stress intensity factor and decreases the
driving stress needed to propagate the crack at a given velocity, For example, for yjn = 0.7
and Vij¢ = 100, the energy required to drive the crack is only about 60% of that needed to
drive the crack in an clastic solid and, hence, the required value of t,—1, is smaller by a
factor of 0.77 (=0.60" ?). Recall that the use of the undrained Poisson’s ratio in (77) yiclds
a lower bound on the induced pressure and, correspondingly, an upper bound on G/ Gecn-
Figure 6 also shows the result for g/ = 0.7 and ff = 1.5, corresponding to the use of v in
(77). For Fl,c = 100, G/ G 15 reduced from 0.60 to 0.49.

The dependence of G,/G.. 0N velocity can be rationalized in terms of the behavior
of the induced pressure: although the maximum pressure increases with velocity, Fig. 5
indicates that the region of significant pressure increase becomes more concentrated at
x = —/ as the velocity increases. Because the effect of the pressure on the stress intensity
factor depends on the pressure induced on —/ £ x € 0 weighted by the inverse square root
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factor, the narrowing of the distribution eventually overcomes the increase in pressure.
Hence, for 17 ¢ between about 10" and 10* G, G, increases with velocity. For still
larger values of ¥7 ¢, the ratio decreases slowly.

CONCLUDING DISCUSSION

We have examined coupled deformation diffusion effects in the steady propagation of
a plane strain shear crack on an impermeable plane in a porous fluid-infiltrated solid. This
investigation is complementary to and uses. for the most part, the same methods as the
analysis by RS of shear crack propagation on a permeable plane.

When the effect of the pore pressure induced on the impermeable plane in diminishing
the frictional resistance is neglected. the results for the impermeable plane are qualitatively
similur to those for the permeable. In particular, coupling between deformation and
diffusion is stabilizing in the sense that the energy that must be supplied by the applied
foads to drive the crack at a given velocity increases with velocity. For a simple model in
which the stress at the crack-tip is singular, the energy that must be supplied increases
monotonically with velocity and the ratio of the necessary energy to drive the crack at
infinite velocity to that for zero velocity is f#°. When a more detailed model of crack-tip
processes that includes a breakdown zone is used. the range of /¢ for which coupled
deformation diffusion effects are stabilizing is finite. Thus, this analysis for an impermeable
planc. like that of RS for a permeable plane, predicts that there is a maximum velocity for
which these effects are stabilizing. The predicted maximum velocity s reasonably consistent
with observations although there is considerable uncertainty in the parameters, particularly
the ditfusivity,

Although the results for the impermeable plane are similar to those for the permeable,
there are significant quantitative differences. Specitically, for Ple ess than about 100, the
stabilizing effects are greater, by as much as 27%. for the impermeable plane. Moreover,
the ringe of Flfe for which stabilization occurs is about an order of magnitude lower for
the impermeable pline.

More dramatic difference between the impermeable and permeable cases results from
the alteration of pore pressure on the impermeable faalt plane, The change in pore pressure
alters the effective compressive stress (total compressive stress minus pore pressure) which
in turn affects the frictional resistunce, The results indicate that the magnitude of the
maximum pressure change on the fault can be a significant fraction, 0.43-0.77, of the driving
stress. I one accepts the path of least resistance argument that suggests pore pressure
increases, which reduce the frictional resistance, are more significant in affecting propa-
gation, then this effect is destabilizing in the sense that the pore pressure increases the
effective driving stress. The calculations suggest that the nominal cnergy releuse rate required
to drive the crack can be reduced by 50% or more by comparison with that needed in a
purely elastic solid. Although the induced pore pressure reduces the required driving stress,
the ratio Goom/ G, increases by about 14% as V//c increases from 10°* to 10°. Thus, because
an increase in driving stress is needed to drive the crack at higher velocities within this
range, the induced pore pressure contributes to the stabilizing effects even though the value
Of G/ G s 18 luss than that for a purely elastic solid.

For simplicity, the two effects of the coupling between deformation and diffusion, the
stiffer response of the material surrounding the cruck to rapid deformation and the alteration
of the frictional resistance by pore pressure induced on the crack, have been studied
separately. In actuality, they occur simultancously and are coupled. Determining the extent
to which the increase of Guom/Gea due to the first effect may offset the decrease duc to the
second requires further study. Anadditional stabilizing cffect. which has not been considered
here., can result from ditation accompanying shear (Rice, 1973, 1980 ; Rudnicki and Chen,
1988). Finally, this paper has emphasized coupling between deformation and pore fluid
diffusion as a possible mechanism for episodic creep events but it is important to acknowl-
edge that a varicty of other mechanisms have also been suggested. These include time and
rate dependence of friction, the coupling of the clastic crust to a more viscous substrate,
and the viscoelastic response of fault zone materials,
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